References

Abdul-Rasool IH, Chamberlain JH, Swan PC, Ward DS Cardiorespiratory and metabolic effects of dopamine and dobutamine infusions in dogs. Crit Care Med. 1987; 15:(11)1044-1050 https://doi.org/10.1097/00003246-198711000-00011

Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One. 2015; 10:(8) https://doi.org/10.1371/journal.pone.0129305

Barrett LK, Singer M, Clapp LH Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit Care Med. 2007; 35:(1)33-40 https://doi.org/10.1097/01.CCM.0000251127.45385.CD

Bateman RM, Sharpe MD, Ellis CG Bench-to-bedside review: microvascular dysfunction in sepsis – hemodynamics, oxygen transport, and nitric oxide. Crit Care. 2003; 7:(5)359-373 https://doi.org/10.1186/cc2353

Belletti A, Benedetto U, Biondi-Zoccai G The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017; 37:91-98 https://doi.org/10.1016/j.jcrc.2016.08.010

Benbenishty J, Weissman C, Sprung CL, Brodsky-Israeli M, Weiss Y Characteristics of patients receiving vasopressors. Heart Lung. 2011; 40:(3)247-252 https://doi.org/10.1016/j.hrtlng.2010.04.007

Bernard GR, Wheeler AP, Russell JA The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med. 1997; 336:(13)912-918 https://doi.org/10.1056/NEJM199703273361303

Bosch NA, Teja B, Law AC, Pang B, Jafarzadeh SR, Walkey AJ Comparative effectiveness of fludrocortisone and hydrocortisone vs hydrocortisone alone among patients with septic shock. JAMA Intern Med. 2023; 183:(5)451-459 https://doi.org/10.1001/jamainternmed.2023.0258

Brackett DJ, Schaefer CF, Tompkins P, Fagraeus L, Peters LJ, Wilson MF Evaluation of cardiac output, total peripheral vascular resistance, and plasma concentrations of vasopressin in the conscious, unrestrained rat during endotoxemia. Circ Shock. 1985; 17:(4)273-284

Brown SM, Lanspa MJ, Jones JP Survival after shock requiring high-dose vasopressor therapy. Chest. 2013; 143:(3)664-671 https://doi.org/10.1378/chest.12-1106

Buckley JF, Singer M, Clapp LH Role of KATP channels in sepsis. Cardiovasc Res. 2006; 72:(2)220-230 https://doi.org/10.1016/j.cardiores.2006.07.011

Cannarozzo CJ, Araos J, Martin-Flores M Phenylephrine and norepinephrine increase blood pressure through opposing physiologic mechanisms in isoflurane-anesthetized dogs receiving acepromazine. Am J Vet Res. 2023; 84:(11) https://doi.org/10.2460/ajvr.23.06.0147

Cobb JP, Natanson C, Hoffman WD N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med. 1992; 176:(4)1175-1182 https://doi.org/10.1084/jem.176.4.1175

Cowley AW, Monos E, Guyton AC Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res. 1974; 34:(4)505-514 https://doi.org/10.1161/01.res.34.4.505

De Backer D, Creteur J, Silva E, Vincent JL Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best?. Crit Care Med. 2003; 31:(6)1659-1667 https://doi.org/10.1097/01.CCM.0000063045.77339.B6

De Backer D, Biston P, Devriendt J Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010; 362:(9)779-789 https://doi.org/10.1056/NEJMoa0907118

Demiselle J, Fage N, Radermacher P, Asfar P Vasopressin and its analogues in shock states: a review. Ann Intensive Care. 2020; 10:(1) https://doi.org/10.1186/s13613-020-0628-2

Dünser MW, Mayr AJ, Tür A Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003; 31:(5)1394-1398 https://doi.org/10.1097/01.CCM.0000059722.94182.79

Errington ML, Rocha e Silva M Vasopressin clearance and secretion during haemorrhage in normal dogs and in dogs with experimental diabetes insipidus. J Physiol. 1972; 227:(2)395-418 https://doi.org/10.1113/jphysiol.1972.sp010039

Evans L, Rhodes A, Alhazzani W Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47:(11)1181-1247 https://doi.org/10.1007/s00134-021-06506-y

Furukawa S, Nagashima Y, Hoshi K Effects of dopamine infusion on cardiac and renal blood flows in dogs. J Vet Med Sci. 2002; 64:(1)41-44 https://doi.org/10.1292/jvms.64.41

Geven C, Kox M, Pickkers P Adrenomedullin and adrenomedullin-targeted therapy as treatment strategies relevant for sepsis. Front Immunol. 2018a; 9 https://doi.org/10.3389/fimmu.2018.00292

Geven C, Bergmann A, Kox M, Pickkers P Vascular effects of adrenomedullin and the anti-adrenomedullin antibody adrecizumab in sepsis. Shock. 2018b; 50:(2)132-140 https://doi.org/10.1097/SHK.0000000000001103

Gitz Holler J, Jensen HK, Henriksen DP Etiology of shock in the emergency department: a 12-year population-based cohort study. Shock. 2019; 51:(1)60-67 https://doi.org/10.1097/SHK.0000000000000816

Gordon AC, Mason AJ, Thirunavukkarasu N Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016; 316:(5)509-518 https://doi.org/10.1001/jama.2016.10485

Hammond DA, McCain K, Painter JT Discontinuation of vasopressin before norepinephrine in the recovery phase of septic shock. J Intensive Care Med. 2019; 34:(10)805-810 https://doi.org/10.1177/0885066617714209

Hamzaoui O, Georger JF, Monnet X Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with lifethreatening hypotension. Crit Care. 2010; 14:(4) https://doi.org/10.1186/cc9207

Hamzaoui O, Jozwiak M, Geffriaud T Norepinephrine exerts an inotropic effect during the early phase of human septic shock. Br J Anaesth. 2018; 120:(3)517-524 https://doi.org/10.1016/j.bja.2017.11.065

Hayes JK, Luo X, Wong KC, McJames S, Tseng CK Effects of dobutamine, norepinephrine and epinephrine on intramucosal pH and hemodynamics of dogs during endotoxic shock. Acta Anaesthesiol Sin. 1998; 36:(3)113-126

Ibarra-Estrada M, Kattan E, Aguilera-González P Early adjunctive methylene blue in patients with septic shock: a randomized controlled trial. Crit Care. 2023; 27:(1) https://doi.org/10.1186/s13054-023-04397-7

Jenkins CR, Gomersall CD, Leung P, Joynt GM Outcome of patients receiving high dose vasopressor therapy: a retrospective cohort study. Anaesth Intensive Care. 2009; 37:(2)286-289 https://doi.org/10.1177/0310057X0903700212

Jentzer JC, Vallabhajosyula S, Khanna AK, Chawla LS, Busse LW, Kashani KB Management of refractory vasodilatory shock. Chest. 2018; 154:(2)416-426 https://doi.org/10.1016/j.chest.2017.12.021

Kato J, Kitamura K Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol. 2015; 764:140-148 https://doi.org/10.1016/j.ejphar.2015.06.061

Kilbourn R Nitric oxide synthase inhibitors – a mechanism-based treatment of septic shock. Crit Care Med. 1999; 27:(5)857-858 https://doi.org/10.1097/00003246-199905000-00003

Klabunde RE, Ritger RC NG-monomethyl-l-arginine (NMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem Biophys Res Commun. 1991; 178:(3)1135-1140 https://doi.org/10.1016/0006-291x(91)91010-a

Kotsovolis G, Kallaras K The role of endothelium and endogenous vasoactive substances in sepsis. Hippokratia. 2010; 14:(2)88-93

Lahiry S, Thakur S, Chakraborty DS Advances in vasodilatory shock: a concise review. Indian J Crit Care Med. 2019; 23:(10)475-480 https://doi.org/10.5005/jp-journals-10071-23266

Landry DW, Oliver JA The pathogenesis of vasodilatory shock. N Engl J Med. 2001; 345:(8)588-595 https://doi.org/10.1056/NEJMra002709

Landry DW, Levin HR, Gallant EM Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997; 95:(5)1122-1125 https://doi.org/10.1161/01.cir.95.5.1122

Laterre PF, Berry SM, Blemings A Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock: the SEPSISACT randomized clinical trial. JAMA. 2019; 322:(15)1476-1485 https://doi.org/10.1001/jama.2019.14607

Levy B, Desebbe O, Montemont C, Gibot S Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock. 2008; 30:(4)417-421 https://doi.org/10.1097/SHK.0b013e318167378f

Liaudet L, Rosselet A, Schaller MD, Markert M, Perret C, Feihl F Nonselective versus selective inhibition of inducible nitric oxide synthase in experimental endotoxic shock. J Infect Dis. 1998; 177:(1)127-132 https://doi.org/10.1086/513813

Lin IY, Ma HP, Lin AC, Chong CF, Lin CM, Wang TL Low plasma vasopressin/norepinephrine ratio predicts septic shock. Am J Emerg Med. 2005; 23:(6)718-724 https://doi.org/10.1016/j.ajem.2005.02.055

Liu ZM, Chen J, Kou Q Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med. 2018; 44:(11)1816-1825 https://doi.org/10.1007/s00134-018-5267-9

López A, Lorente JA, Steingrub J Multiple-center, randomized, placebocontrolled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004; 32:(1)21-30 https://doi.org/10.1097/01.CCM.0000105581.01815.C6

Lundberg OHM, Lengquist M, Spångfors M Circulating bioactive adrenomedullin as a marker of sepsis, septic shock and critical illness. Crit Care. 2020; 24:(1) https://doi.org/10.1186/s13054-020-03351-1

Marino R, Struck J, Maisel AS, Magrini L, Bergmann A, Di Somma S Plasma adrenomedullin is associated with short-term mortality and vasopressor requirement in patients admitted with sepsis. Crit Care. 2014; 18:(1) https://doi.org/10.1186/cc13731

Marshall JC, Leligdowicz A Gaps and opportunities in sepsis translational research. EBioMedicine. 2022; 86 https://doi.org/10.1016/j.ebiom.2022.104387

Martin C, Medam S, Antonini F Norepinephrine: not too much, too long. Shock. 2015; 44:(4)305-309 https://doi.org/10.1097/SHK.0000000000000426

McIntyre WF, Um KJ, Alhazzani W Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018; 319:(18)1889-1900 https://doi.org/10.1001/jama.2018.4528

Mink SN, Simons FE, Simons KJ, Becker AB, Duke K Constant infusion of epinephrine, but not bolus treatment, improves haemodynamic recovery in anaphylactic shock in dogs. Clin Exp Allergy. 2004; 34:(11)1776-1783 https://doi.org/10.1111/j.1365-2222.2004.02106.x

Minneci PC, Deans KJ, Banks SM Differing effects of epinephrine, norepinephrine, and vasopressin on survival in a canine model of septic shock. Am J Physiol Heart Circ Physiol. 2004; 287:(6)H2545-H2554 https://doi.org/10.1152/ajpheart.00450.2004

Morales D, Madigan J, Cullinane S Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. Circulation. 1999; 100:(3)226-229 https://doi.org/10.1161/01.cir.100.3.226

Murphy KM, Rishniw M, Silverstein DC Use of vasopressors for treatment of vasodilatory hypotension in dogs and cats by Diplomates of the American College of Veterinary Emergency and Critical Care. J Vet Emerg Crit Care (San Antonio). 2022; 32:(6)714-722 https://doi.org/10.1111/vec.13230

Myburgh JA, Higgins A, Jovanovska A A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008; 34:(12)2226-2234 https://doi.org/10.1007/s00134-008-1219-0

Narayan S, Petersen TL Uncommon etiologies of shock. Crit Care Clin. 2022; 38:(2)429-441 https://doi.org/10.1016/j.ccc.2021.11.009

Nedel WL, Rech TH, Ribeiro RA, Pellegrini JAS, Moraes RB Renal outcomes of vasopressin and its analogs in distributive shock: a systematic review and metaanalysis of randomized trials. Crit Care Med. 2019; 47:(1)e44-e51 https://doi.org/10.1097/CCM.0000000000003471

Nuñez-Borque E, Fernandez-Bravo S, Yuste-Montalvo A, Esteban V Pathophysiological, cellular, and molecular events of the vascular system in anaphylaxis. Front Immunol. 2022; 13 https://doi.org/10.3389/fimmu.2022.836222

Pascoe PJ, Ilkiw JE, Pypendop BH Effects of increasing infusion rates of dopamine, dobutamine, epinephrine, and phenylephrine in healthy anesthetized cats. Am J Vet Res. 2006; 67:(9)1491-1499 https://doi.org/10.2460/ajvr.67.9.1491

Peavy RD, Metcalfe DD Understanding the mechanisms of anaphylaxis. Curr Opin Allergy Clin Immunol. 2008; 8:(4)310-315 https://doi.org/10.1097/ACI.0b013e3283036a90

Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res. 1994; 28:(1)34-39 https://doi.org/10.1093/cvr/28.1.34

Rhodes A, Evans LE, Alhazzani W Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43:(3)304-377 https://doi.org/10.1007/s00134-017-4683-6

Rosati M, Dyson DH, Sinclair MD, Sears WC Response of hypotensive dogs to dopamine hydrochloride and dobutamine hydrochloride during deep isoflurane anesthesia. Am J Vet Res. 2007; 68:(5)483-494 https://doi.org/10.2460/ajvr.68.5.483

Russell JA, Walley KR, Singer J Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008; 358:(9)877-887 https://doi.org/10.1056/NEJMoa067373

Russell JA, Vincent JL, Kjølbye AL Selepressin, a novel selective vasopressin V1Aagonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care. 2017; 21:(1) https://doi.org/10.1186/s13054-017-1798-7

Russell JA, Rush B, Boyd J Pathophysiology of septic shock. Crit Care Clin. 2018; 34:(1)43-61 https://doi.org/10.1016/j.ccc.2017.08.005

Sharshar T, Carlier R, Blanchard A Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med. 2002; 30:(3)497-500 https://doi.org/10.1097/00003246-200203000-00001

Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D Circulating vasopressin levels in septic shock. Crit Care Med. 2003; 31:(6)1752-1758 https://doi.org/10.1097/01.CCM.0000063046.82359.4A

Serpa A, Nassar AP, Cardoso SO Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care. 2012; 16:(4) https://doi.org/10.1186/cc11469

Silverstein D, Hopper K Small animal critical care medicine. 2022;

Silverstein DC, Waddell LS, Drobatz KJ, King LG Vasopressin therapy in dogs with dopamine-resistant hypotension and vasodilatory shock. J Vet Emerg Crit Care. 2007; 17:(4)399-408 https://doi.org/10.1111/j.1476-4431.2007.00235.x

Song X, Liu X, Evans KD The order of vasopressor discontinuation and incidence of hypotension: a retrospective cohort analysis. Sci Rep. 2021; 11:(1) https://doi.org/10.1038/s41598-021-96322-7

Thangaraj SR, Srinivasan M, Arzoun H, Thomas SS A systematic review of the emerging treatment for hepatorenal syndrome with a principal focus on terlipressin: a recent FDA-approved drug. Cureus. 2023; 15:(7) https://doi.org/10.7759/cureus.42367

Tisdale JE, Patel R, Webb CR, Borzak S, Zarowitz BJ Electrophysiologic and proarrhythmic effects of intravenous inotropic agents. Prog Cardiovasc Dis. 1995; 38:(2)167-180 https://doi.org/10.1016/s0033-0620(05)80005-2

Vallabhajosyula S, Jentzer JC, Khanna AK Vasodilatory shock in the ICU: perils, pitfalls and therapeutic options. Annual update in intensive care and emergency medicine 2018. 2018; 99-111

van Lier D, Kox M, Pickkers P Promotion of vascular integrity in sepsis through modulation of bioactive adrenomedullin and dipeptidyl peptidase 3. J Intern Med. 2021; 289:(6)792-806 https://doi.org/10.1111/joim.13220

Vincent JL, Van der Linden P, Domb M, Blecic S, Azimi G, Bernard A Dopamine compared with dobutamine in experimental septic shock: relevance to fluid administration. Anesth Analg. 1987; 66:(6)565-571

Weiss SL, Peters MJ, Alhazzani W Surviving Sepsis Campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020; 21:(2)e52-e106 https://doi.org/10.1097/PCC.0000000000002198

Wieruszewski ED, Jones GM, Samarin MJ, Kimmons LA Predictors of dysrhythmias with norepinephrine use in septic shock. J Crit Care. 2021; 61:133-137 https://doi.org/10.1016/j.jcrc.2020.10.023

Wilson MF, Brackett DJ, Hinshaw LB, Tompkins P, Archer LT, Benjamin BA Vasopressin release during sepsis and septic shock in baboons and dogs. Surg Gynecol Obstet. 1981; 153:(6)869-872

Wu Z, Zhang S, Xu J Norepinephrine vs vasopressin: which vasopressor should be discontinued first in septic shock? A meta-analysis. Shock. 2020; 53:(1)50-57 https://doi.org/10.1097/SHK.0000000000001345

Yamamura H, Kawazoe Y, Miyamoto K, Yamamoto T, Ohta Y, Morimoto T Effect of norepinephrine dosage on mortality in patients with septic shock. J Intensive Care. 2018; 6 https://doi.org/10.1186/s40560-018-0280-1

Yoo JH, Kim MS, Park HM Hemodynamic characteristics of vasopressin in dogs with severe hemorrhagic shock. J Vet Med Sci. 2006; 68:(9)967-972 https://doi.org/10.1292/jvms.68.967

Yoo JH, Kim MS, Eom KD, Park JI, Park C, Park HM Vasopressor therapy using vasopressin prior to crystalloid resuscitation in irreversible hemorrhagic shock under isoflurane anesthesia in dogs. J Vet Med Sci. 2007a; 69:(5)459-464 https://doi.org/10.1292/jvms.69.459

Yoo JH, Park C, Hahm DH, Lee HJ, Park HM Determination of optimal dose of arginine vasopressin in hemorrhagic shock in dogs. J Vet Med Sci. 2007b; 69:(7)755-758 https://doi.org/10.1292/jvms.69.755

Vasodilatory shock: a review of pathophysiology and vasopressor therapy

02 November 2024
17 mins read
Volume 29 · Issue 11
Figure 1. Progression of vasodilatory shock as a result of sepsis.
Figure 1. Progression of vasodilatory shock as a result of sepsis.

Abstract

Vasodilatory shock is characterised by a global loss of vasomotor tone, leading to maldistribution of blood volume, low systemic arterial pressure and hypoperfusion. This syndrome can be caused by sepsis, anaphylaxis and a wide range of other aetiologies. This review article explores the pathophysiology of vasodilatory shock, including well-understood mechanisms and emerging avenues of future investigation. Options for vasopressor therapy are reviewed, including evidence from preclinical canine models, small animal clinical research, large human clinical trials and the Surviving Sepsis Campaign. Recommendations for rational vasopressor choice are extrapolated from this evidence. Future directions include the development of novel vasoactive agents, clinical data comparing the safety and effectiveness of vasopressors in small animals and the development of a veterinary-specific consensus statement guiding best practices for the treatment of vasodilatory shock.

Circulatory shock is a syndrome characterised by inadequate tissue perfusion leading to insufficient oxygen and nutrient supply for cellular function. Systemic consequences of circulatory shock include endothelial dysfunction, vasoplegia, multiple organ dysfunction syndrome and eventual death if left untreated. Circulatory shock has been classically divided into four categories, each defined by the type of pathology leading to inadequate perfusion (Silverstein and Hopper, 2022). These categories are:

Other subcategories such as hypoxic shock (decreased oxygen content in arterial blood) and metabolic shock (inability to use delivered oxygen) are independent of circulatory dysfunction.

Vasodilatory shock caused by sepsis is the most common form of shock among critically ill human patients (De Backer et al, 2010; Gitz Holler et al, 2019). Although similar data do not exist in veterinary medicine, it remains a common cause of morbidity and mortality in critically ill small animals in the authors’ experience. Besides sepsis, vasodilatory shock may be caused by non-in-fectious aetiologies leading to systemic inflammation (ie systemic inflammatory response syndrome) such as burn injuries, acute pancreatitis or trauma. Other causes include, but are not limited to, anaphylaxis, toxicoses (eg nitrogen or carbon monoxide), liver failure and glucocorticoid deficiency (Landry and Oliver, 2001; Narayan and Petersen, 2022). Persistent, severe shock of any cause can also result in pathological vasodilation.

Register now to continue reading

Thank you for visiting UK-VET Companion Animal and reading some of our peer-reviewed content for veterinary professionals. To continue reading this article, please register today.